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Probabilistic ream Relational Algebra: A Data M odel for

Sensor Data Streams

Haiyang Liu®, San-Yih Hwang’, and Bideep Sivastava®
aDepartment of Computer Science and Engineering, University of Minnesota
®Department of Information Management, Nationd Sun Yat-Sen University

Abstract

Sensor data streams exhibit spedal characteristics such as inherent information uncertainty and inherent data sample
correlations, both within and across streams. We introduce a new data model, called Probalili stic Sream Relationd
Algebra (PSRA), that models a sensor data stream as a set of probalili stic data samples, along with prediction strategies
for each attributes, capturing domain knonmedge of inherent data correlations. We also expli citly associate eve'y operation
with schedule, spedfying when next data sample shoud be produced, to facilit ate resource management in sensor networks.
We prove that operators in PSRA are non-blocking, thus making PSRA espedally suitable for data stream processng. We
also show that conventiond relationd model and existing deterministic data stream processing model can be modeled in

PSRA

1. Introduction

Advances in device miniaturizaion, wireless networking and
embedded processng have reduced both the size and cost
required for sensing, communicating and computing. This
promises a future where a large number of interconneded and
posshly collaborative sensors will be deployed in many
applications such as environmental monitoring, industrial
sensing and diagnastics, battlefield monitoring and patient
monitoring [BGS0Q]. Large amourts of data, in the form of
streams are produwced in such environments. These data
streams, referred as sensor data streams, exhibit several key
charaderistics in addition to those outlined in [BBD+02]:

Inherent Uncertainty
Sensor data streans generated from sensor realings are
discrete observations of generally continuows physicd
phenomena. The data samples in a sensor data stream depict
only a partial picture of the phenomena under observation.
Thus, sensor data streans are inherently approximate
representations of physicd phenomena. Uncertainty is
therefore inherent when applicaions try to query the physicd
world with only discrete sensor data streams available. In
additi on, uncertainties are aso introduced during the processes
of data colledion (i.e. sensor measurement), data movement
(i.e. communicdion) and data processng (i.e. computation).
These uncertainty sources are summarized as foll ows:
Data Collection: Data regarding a phenomenon are
colleded through sensor measurements. Measurement
errors are inherent due to the limitations of sensing
principles and sensor operation environments, such as
stability of power sources, sensor locetions and sampling
frequencies. Physicd measurements usually come as a
value distribution range, generally modeled as a Gaussan
probability distribution function (p.d.f.).
Data Movement: In sensor networks, data are moved

through networks of communicétion channels. Data delay
and data loss due to limited communication resources
such as channel bandwidth are inherent in today’'s
communicaion networks [CC+03]. Even if a perfed
measurement at a required time point is available at the
source side (i.e. the sensor), data delay and data loss can
introduce uncertainty at the sink side (i.e. end user side)
becaise the data sample may not arrive on time or never
arrive.

Data Processing: Since sensor data streams are
potentialy unbouned in size, data processng units with
only limited storages usualy have to use approximate
methods such as diding windows or data strean sketching
to process data [BBD+02]. Furthermore, strean data
procesdng often has red-time requirements, with only a
milited time avail able to process ead sample. Thus, the
limitation of computing resources can also introduce
uncertaintiesin the results.

Inherent Intra- and inter- stream correlations

Data samples in a sensor data stream are usualy temporal
observations of physicd phenomena. Thus, these data samples
have inherent temporal correlations as posesed by the
phenomena. For example, vehicle pasitions at time ty and t;
are correlated through the vehicle velocity and the time
difference (t;- tp). Different data streams observing the same
objea from different aspeds can be correlated as well. For
example, the temperature reading strean and the presare
reading strean of an air chamber are correlated through the
ided gas law: PV = nRT, where P denotes presaure, V volume,
T temperature, R a constant and n related to the massof the air
in the chamber. When the chamber is closed and volume is
fixed, the correlationis simplified to P/T = constant.

Energy consumption sensitive



The small size of sensors and highly demanding functions in
sensing, communicaion and computing make energy a
predous resource in sensor data stream processng systems.
When sensors are networked through wireless channels,
communicdion is the major energy consumer [EMS02]. Thus,
when and how frequently data samples are transmitted plays a
major role in prolongng the lifetime of a sensor network.

Data importance is context-dependent

In a sensor data stream, data samples have different
importance under different computing context (i.e. everything
that could affed performing an operation). For example, if the
computing context is evaluation of a predicae (Temperature <
30), temperature readings with values around 30 will be more
important than those far below 30 or far above 30 becaise the
readings around 30 contribute more to the determination of
state change. This example illustrates data value-based
importance Data importance also depends on other attributes
of data streans. For example, if the computing context is to
obtain the most acarate temperature of an objed. Asume two
temperature sensors are mourted on the same locaion of an
objed. The temperature readings from the temperature sensor
with higher predsion have more importance than those from
the sensor with lower predsion. Data importance plays a
central role in load shedding when a data steam processng
system is overloaded.

Efficient and systematic management of sensor data streans
cdlsfor adata model that takes into acourt the above spedal
charaderistics. In this paper we develop the Probabilistic
Stream Relational Algebra (PSRA), a data model for sensor
data steams, by extending the conventional relational model.
We first extend the relational model to allow new data types
suppating data uncertainty representations, e.g. example
Gausdan p.d.f. Then domain knowledge of applicdions,
cegpturing the intra- or inter- strean correlations is
incorporated into the model. Thus, a sensor data strean is
modeled as a series of data samples and the knowledge
describing their correlations. The correlation model and data
samples with suppat for uncertainties make up a more
complete view of a phenomena being monitored. This new
data strean model addresses the first two issues outlined
abowe. In order to address the last two isues, every sensor
data stream operation is assciated with a schedule, spedfying
when to prodwce the next data sample. A predicae-based
schedule spedficdion is propased, suppating spedficetion of
both push (e.g. event-driven) and pull (e.g. periodic query)
type operations. Finaly, we prove that both conventional
relational model and deterministic data stream processng
model are spedal cases of PRA. We aso ill ustrate the power
of the model in helping resource management in sensor
networks through clea formulation of the resource
optimizaion problems for the best effort and the QoS-driven
data stream processng modes.

This paper is organized as follows. Sedion 2 introduces new

concepts such as Predication Strategy to be used in PRA and
how basic operations (e.g. algebraic operations and predicate
evaluation) are caried out on new data types suppating
uncertainties. Sedion 3 defines the concept of PSrelation, the
formal model of sensor data streams. The essential relational
operators (i.e. Union, Intersedion, Difference Seled,
Projedion, Cartesian Prodwct, Join, Aggregation) over the
PSrelation are defined in sedion 4. Several important
properties of PSRA are discussd in sedion 5. Related work is
discussd in sedion 6. We conclude this paper in Sedion 7.

2. Preliminariesand Basic Definitions
2.1 Representation of data uncertainty

Data uncertainty management generaly falls into two
caegories: fuzzy theory-based and probability theory-based.
Since the nature of data management in sensor network
applications is fundamentally probabili stic [FGB02], we adopt
a probability theory-based approadh. In probability theory,
uncertainty is generally represented using a Probability
Density Function (p.d.f.), which can be either discrete or
continuows [R95].

Continuous PD.F..

Representative continuows p.d.f.’s include exporentia
distribution, Gausdan distribution etc [R95]. Gausdan p.d.f is
of particular interest to sensor network applicaions because
measurements of physicd phenomena are generally modeled
as Gausdan distributions [W94]. The Central Limit theorem
reveds that a large number of random samples leals to a
Gausdan distribution. A Gausdan pd.f. (also known as Normal
p.d.f.), is charaderized by two parameters. p — the mean
values and o — the standard deviation. Formally,

v \2 2
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Discrete PD.F.

A Discrete p.d.f. is given by spedfying the probability of eah
value a random variable could asaume. Well known discrete
p.d.f.’s include uniform distribution, binomial distribution,
geometric distribution, and Poisoon distribution [R95]. The
discrete p.d.f. for a Boolean random variable is a spedal one
whaose domain contains only two values: TRUE and FAL SE.

2.2 Essential strategiesfor sensor data stream processing
srediction strategy

In sensor network applications, data streams are observations
of physicd phenomena. Data samples in sensor data streams
arising either diredly from sensor measurements (referred to
as origina streams) or derived (through operations) from
original streams (referred to as derived streams) have intrinsic
correlations. For example, a strean of temperature readings of
a room must follow hea transfer laws, e.g. the room
temperature change is propartional to the room hea cgpadty
change, which in turn is determined by the energy the room
recaved in acertain period of time [M95]. Thus, estimation of
the temperature change in a time unit is bouncd by the



maximum energy the room could receve. Furthermore, if the
amourt of energy recaved by the room is known, the next
temperature realing can be predicted (with a certain level of
uncertainty). We refer to the correlation between data samples
within a strean as intra-correlation. In some cases, data
samplesin stream A are correlated with data samplesin stream
B. For example, the temperature and presaure of a closed
chamber filled with air (generaly treaed as idea gas) are
governed by the ided gas law. Thus, at any time point since
the temperature measurement can be predicted through the
presarre measurement at the same time, and vice versa, we
refer to this correlation as inter-correlation. Taking into
acourt these correlations can significantly reduce number of
data sample required to carry same amourt of information.
Thus modeling a sensor data strean as an ordered colledion
of data samples with timestamps is oversmplified. These
intrinsic data correlations associated with a stream must be
ceptured to model the strean as an integral entity. In the
PRA modedl, these data correlations are modeled as
Prediction Strategies, formally defined as foll ows.

Definition 1: A stream history is a sequence of ordered pairs
(t, P) listed in ascending order of t;, where P; is the data
sample value at time ;.

Definition 2: Prediction Srategy (P-strategy)

A P-sgtrategy is a function @ (history, t) >P that outputs (or
predicts) avalue in P given a sequence history history and an
arbitrary timestamp t.

A prediction strategy is an approximation model for an
attribute value in a sensor data stream in case sensor reading is
not avail able or the sample was lost in communication when
the attribute value at a certain time point is needed. Note that
the range (P) of a P-strategy does nat have to be the same as
any domain in the inpu history (history). The abowe
pressure-temperature inter-correlation example is a case of
using attributes in other domains, posdgbly in other streams,
for prediction. We aso do NOT constrain the range of t to
alow badkward predictions (i.e., t does not have to be larger
than any timestamp in history). Two trivial but important

strategies CONST and IGNORANT arelisted in Appendix A.1.

CONST P-strategy models a constant data stream where
attribute values do nat change over time. Obviously, only a
singletuple at any time instant is needed to perfedly represent
the whole constant data stream. Attributes in the traditional
relational model can be realily modeled with this strategy.
IGNORANT P-Strategy models the situation where no data
correlation model is avail able. Thus if there is a measurement
at time instant t, the prediction for that time instant is exadly
the same measurement. Otherwise, IGNORANT P-Strategy
returns the most recent avail able measurement value with data
uncertainty being infinite, which renders the result completely
unreliable. Data behaviors in deterministic stream models can
be readily modeled with IGNORANT P-Strategy sincethereis
no prediction available and estimation of the states of
ohservables only comes from timely avail abilit y of data.

In pradice, prediction strategies for sensor data streams can be
constructed from physicd model or datisticd model of
observations. The ided gas law in the above example would
yield a physicd-law-based prediction strategy for the
temperature stream. For general linea system models, Kalman
Filter [K6Q] is an excdlent tod to build an optimal observer
combining nonperfed knowledge of system model and non
perfed measurements. Kalman filter has been extensively
used in many physicd measurement related engineaing
applications such as aircraft tradking and navigation [BL98].
For example, in an aircraft tracking application, to determine
the velocity of an aircraft, one could use a Dopper radar, or
the velocity indicaions of an inertial navigation system, or the
pitot and tatic pressure and relative wind information in the air
data system. A Kalman filter can be built to combine all of this
data and knowledge of the various systems dynamics to
generate an overall best estimate of velocity at any time [M79].
A particle position tradking sample problem is given in [K60].
Details are omitted here. When physicd models are not
available, statisticd models such as those data stream
sketching models can be used to build the prediction strategies.
Examples include randaomized sketching [AM S96], V-Optimal
Histograms [JK+98] and wavelet-based approximation
[CG+0Q]

P-strategies for derived PSrelations can be constructed out of
inpu ones based on the operations. How P-strategies of sensor
data streams evolve through ead PS operator is discussd in
Sedion 4. When P-strategies constructed this way do not
generate good predictions, new ones can be constructed
throughdiredly building statisticd models.

Composition strategiesfor probabilistic data

The introdwction of data uncertainty into the sensor data
strean procesing model makes operations much more
complicated as all operations now neal to hande p.d.f.'s
instead of deterministic values. This is espedally true when it
comes to combining multi ple data sample into a new one. For
example, observations of the same objed at the same time can
be obtained from multiple sources such as redundant sensors.
The final estimation of the state of the objed may be spedfied
as the average of the individual observations. Generally
operations invalving multiple randam variables need to have
the joint distribution function of those variables. Constructing
the joint distribution from individual p.d.f.’s needs to consider
the dependency of these randam variables. In our framework,
a dependency and requirement model, referred as Compasition
Strategy, is introdwced to define the way multiple random
variables are “compased” through an operation. This model
allows users to incorporate their domain knowledge (i.e. the
extent to which these variables are dependent) and their
reguirements (e.g. conservative or aggressve) to a data strean
processng system.

The dependency and requirement model spedfiesthe



dependencies of multi ple randam variables and provides the
guidance on how an operationinvolving multiple random
variables shoud be caried out. Since Gausdan distributioniis
the most commonly used p.d.f. for measurement
representation, we use it to show some example results in the
dependency and requirement model. Table 1 and 2 in
Appendix A.2 show the compasiti on strategies for algebraic
operations and logicd operations respedively.

Cleaning Strategy

In a sensor data stream processng system, observations of the
same observable at same time can be obtained from multi ple
sources and paths. In order to form a single consistent view of
the observable at a given time, a user-spedfied strategy is
nealed to fusion the multiple observations available (either
consistent or inconsistent) of the same attributes at the same
time point into one estimation for that time point. A cleaiing
strategy is introduced for this purpose.

Definition 3: A stream observation is an ordered pair (t, P),
where Py is aset of observed values at time point t.

Definition 4: Cleaning Srategy (CL-strategy)

A CL-strategy is a function C: obs =P that outputs a
valuein P by combining valuesin a strean observation obs.

A cleaning strategy spedfies the way to generate a single
estimation of an observable at any time paint, eliminating
redunchncies and inconsistencies inherent in a probabili stic
sensor data strean processng system. Common cleaning
strategies include:

1. Optimistic -- picking the observation with the least
uncertainty

2. Average—takingthe average of al observations

3. Conservative -- picking the observation with the most
uncertainty.

A cleaning strategy can be composed using the basic
operations with appropriate settings on dependency and
requirements as described abowve. For example, suppcse a
stream ohservation contains three positively correlated values
Ps ={N(u, 6 1), N(uz, o 2), N(us, o 3)}, and the average
operation is adoped as the CL-strategy. By taking the
aggressve requirement, the resultant value becomes
Myt + 3 min(oy,0,,03)

N ’
( 3 3

) (referred to Table 1 in
Appendix A.2.).

2.3 Schedules

Thoughthe states of many physicd phenomena are continuots,
their representations and processng must be caried out on
discrete time points. We introduce the concept of schedule to
spedfy these time points required by applications, triggered by
spedal events or limited by sensor capabiliti es.

Definition 5: Schedule

A schedule Sisalist of (finite or infinite) monaonicaly
increasing timestamps.

A schedu e defines the series of al distinct time points that are
of interest to an applicdion or an operation, in the entire time
history. In many sensor network applicaions, a schedule
consists of an infinite number of time points. For example,
“starting from 12:00:00 05/15/04 with a sampli ng frequency of
10 minutes’ spedfies a periodic schedule commonly used in
monitoring applications.

To construct a pradicd sensor network applicaion, a finite
representation of a schedule is needed. Observe that, thougha
schedule can have an infinite number of members, only a
finite number of them are needed at any time. In most cases,
only the next time point in a schedule is needed for a sensor or
processng nock to operate. To suppat both push-type and
pull -type applicaions, the schedule spedfication must be able
to suppat “event-driven” spedfication and application
reguirement-driven such as periodic monitoring requirements.
We propcse a predicate-based schedule spedfication for this
purpose, which is shown in Appendix A.3.

3. Probabilistic
(PS-relation)
3.1 Probabilistic Sream Tuple
Borrowing the concepts from OLAP [CD97], we distinguish
data in sensor network applicaions into two caegories,
dimension data and measurement data. Dimension data
spedfies a caegory of information for identifying objeds
rather than measuring readings. Dimension data are commonly
used to identify data sources and take deterministic forms (i.e.
represented in traditional data typesinstead of p.d.f.’s). Sensor
id's, sensor types, and sensor locaions are among the
examples of dimension data. Measurement data spedfies the
attributes of the objed identified by the assciated dimension
data. Temperature readings are examples of measurement data
in a data strean generated by a temperature sensor. As
discused in previous sedions, messurement data have
inherent uncertainties and thus are represented generally by
PD.F.s. Furthermore, domain knowledge and applicaion
requirements are introduced in form of prediction strategy to
cgpture the temporal correlations of measurement data. Thus
there is a need to extend the traditional definition of data type
defining an attribute. We introdwce the concept of stream
domain to capture the extra charaderistics.
Definition 6: Probabilistic Sream Domain (PSD)
A probability stream domain (PD) is an ordered pair (pdd
p-strategy), where pdd is referred to as Probabilistic Data
Domain (PDD) whose values may be p.d.f.’s in addition to
deterministic data types, and p-strategy is a prediction strategy
that generate valuesin the domain of pdd

Stream Relation

The pddin a PD spedfies bath the data type (e.g., Gaussan
p.d.f.) and the data range (e.g. from O to 1000, which can be
used to spedfy the limitation of a sensor. The p-strategy in a



P captures the strean charaderistic. Note that p-strategy is
extra information for fadlitating modeling of a data stream,
rather than a mandatory requirement on the data. In fad the
p-strategy will be dynamicdly updeted as additiona
observationsin a data stream comein.

Definition 7: Dimensional Domain (DD)

A DD domain is a spedal case of a P domain, where pdd
has a deterministic data type and p-strategy is CONST

A DD domain provides an approach to modeling conventional
data domain in our probabili stic data stream framework. An
atribute in a DD domain is always deterministic and the
CONST prediction strategy guarantees that its value does not
change over time. Traditional non-stream relational data are
readily modeled using DD domain. Note that traditiona
deterministic data type can be modeled as speda cases of
probabili stic data type for the purpose of computation. For
example, deterministic value 100 is equivalently represented
by a Gausdan p.d.f. N(100, 0), i.e. a Gausdan distribution
function with mean value at 100 and standard deviation being
0. This spedal function is aso referred to as Delta function
[R9O5].

Definition 8: A dimension attribute is an ordered pair (dim,
dd), where dim and dd are the name and the domain of the
attribute respedively and dd must beaDD.

Definition 9: A measurement attribute is an ordered pair (mea,
psd), where mea and psd are the name and the probability
stream domain of the attribute respedively and psdisa PD.

Definition 10: Probabilistic Stream Schema (PS-schema)

A PSschema is comprised of a nonempty list of
dimension attributes and a li st of measurement attributes.

A PSschema is an ordered list of attribute name and domain
pairs, analogows to a conventiona relational schema
Attributes in a PSschema are divided into two types, namely
dimension attributes and measurement attributes. The values
in dimension attributes are assumed to change only at some
discrete time points and these changes are completely
refleded on the tuples pertaining to the PSschema. In contrast,
values in measurement attributes may continuowsly change
over time, in addition to their probabilistic nature. An
associated prediction strategy gives hints on how measurement
atribute values advance over time. The definition of
PSschema also requires that any valid PSschema must have
a least one dimension attribute, providing room for
identifying streams.

Note that since a P-strategy is a model fadlit ating data sample
predictions in a stream rather than a constraint on data in the
stream, two Ps are considered compatible if they have the
same probabilistic data domain. Thus, two schemas are
considered “compatible” as long as &l of their correspondng
attributes have compatible domains. When defining operations
in this paper, we aso use “same schema” to refer to
compatible schema. The P-strategy changes are explicitly

addressed.
Definition 11: Probabilistic Stream Tuple (PS-tuple)

A PStuple of a PSschema Sch contains a list of valid
dimension attribute values, a list of valid measurement
attribute values as determined by Sch or NULL, and a valid
timestamp on universal clock.

A PStuple with NULL on all measurement attributes is also
cdled NULL PStuple. The reason for inventing NULL
PStuple will bemme clea when we introdwce agebraic
operations in the next sedion. In this paper NULL means
empty or not apgicable instead of unknown.

3.2 Probabilistic Sream Relation (PS-relation)

Definition 12: An objed PStuple set O over a PSchema Sch

under aschedule Sisaset of PStuples of Sch such that

1. al PStuples in O share the same vaues on all
dimension attributes

2. thetimestamp of ead PStuplein O must bein S

3. eadtimestamp in Shas exadly one PStuplein O.

An objea PStuple set remrds the measures of an objed
(identified by the same dimension attribute values) at various
time points as spedfied by a schedule.

Definition 13: PS-relation

A PSrelation R over PSschema Sch under a schedule Sis the
union of severa objed PStuple sets over Sch under S,

A PSrelation is a colledion (posgbly infinite number) of
objead PStuple sets compatible with the same schema. A
PSrelation can have multiple obed PStuple sets, eath
representing a series of obhservations of an observable
identified by a distinct set of dimension attribute values. Each
objea PStuple set can be viewed as a sub-stream in the main
stream represented by a PSrelation. All objed PStuple setsin
a PSrelation share the same PSrelation schedule and the
same P-strategy for ead attribute. All sub-streamnsin the same
strean thus have strong logicd ties, i.e. same schema, same
schedule and same stream charaderistics. The definition of the
PSrelation also guarantees that a PSrelation is a clean view
of observables becaise no reduncant tuples are allowed and no
unresolved observations of the same observable at the same
time are allowed. PSrelations can be generated either direaly
from sensors (direat PSrelation) or derived throughoperations
(derived PSrelation). We do not distinguish between these
two types in our proposed framework as they paose no
differences as far as the agebra (i.e., representation and
processng) is concerned. An example PSrelationis shown in
Appendix A.4.

3.3 Semantics of PSrelation

A PSrelation represents all available information on the
history of a number of observables. Each PStuple in the
PSrelation represents a base fad observation of the
observable at a particular time point With the predicaion



strategies avail able, observation at any time can be computed
in a PSreation. Thus the predicdion srategies in a
PSrelation alows a possbly losy representation of a
continuows phenomenonwith discrete finite number of tuples.

Equivalence of two PSrelations is no longer as simple as set
membership testing in PSRA. Rather it is defined as
information equivalence For example, if R1 can be resampled
to have same estimation quality (i.e. same uncertainty) at all
time points as R2 have, R1 is information equivalent to R2. If
estimation quality by R1 is same as R2 only on time paints
spedfied in a schedue S, R1 is information equivalent to R2
under S. Generaly, less base fad observations are needed
when a better prediction strategy is available to contain same
amourt of information. The concept of information
equivalence can fadlitate resource management in sensor
networks. c. For example, given QoS requirement for a data
stream, finding its PSrelation representation with minimum
number of PStuples can reduce storage needed for the data
stream and energy required to transmit data samples from one
nock to another

4. PSOperations

4.1 Helper operations

Cleaning

As mentioned in Sedion 2.2, cleaning functions, in the form
of CL-drategies, are pradicdly nealed to remove data
redunchncies and to resolve observation inconsistencies,
serving the purpose of constructing out of raw data a valid
PSrelation.

Definition 14: Cleaning

Let T be a set of PStuples of the same PSschemawith aset C
of CL-strategies, one for eadhy measurement attribute. The
cleaing of T using C, denoted k¢(T), is defined as foll ows:

K@) ={(d,mt): X OT,rtime=t,d =r.dim,
m = Clean(C, Measure(t, d, T))}

where r.time and r.dim return the time and dimension attribute
values of a PStuple r respedively, Measure(t, d, T) retrieves
al measure attribute values of PStuples in T that have the
same timestamp t and dimension attribute d, and Clean(C, M)
applies the CL-gtrategies in C on the measure attribute values
in M.

Cleaning of a PStuple set credes a valid PSreation with
consistent observations and no data redundancy. The Cleaning
operation first divides the PStuple set T into subgoups by
their dimension attributes values. For ead subgoup (i.e. all
tuples with same dimension attributes values), find all tuples
with the same timestamp and apply the CL-strategy. Thus,
after Cleaning operation, it is guaranteed that there is one and
only one observation (PStuple) for ead distinct time point for
eadt objed tuple set. The set property of no dudicae tuplesis
automaticdly guaranteed by this operation. Example is
omitted sincethis operationis straightforward.

Resampling

In sensor network applicdions, data points generated by
sources may not match the data consumers’ requirements, and
thus resampling of the origina streams is usually required.
Semanticdly, resampling of a PSrelation generates a new
view (spedfied by a new schedule) of observables from their
current view.

Definition 15: Resampling

Let the PSschema of a PSrelation R be ((dimy, ddy)... (dimy,
dd,), (mea;, pdd)... (mea, pdd)) and the P-strategy
asociated with i'th measurement attribute be P,. The
resampling of a R under a schedule S, denoted as ps(R), is a
PSrelation as defined below:

ps(R) ={(dy,....d,,,my,....m,, 1) :tOSCLCr ORC
r.dim=(d,,...,d,,) Or.m; =P, (history,,t) O
r.m, = P, (history,,t) O...0r.m, = P, (history,,t)}

where P; derotes the predction strategy for the i'th
measirement atribute .
history, represeris the history informaton passed in for
predction of attribute ¢;. history; may come from within R or
from other PSrelaions.

Resampling of a PSrelaion creaks a new PSrelaion with
differert tuple set, ard thus a differert view of the observales
The Resampling operation first dividesthe PStuple set R into
subgoups by their dimension atiributes values. Next, apply
the P-strategy on values of each attribute in eachsubgroup (i.e.
all tuples with the same dimension atributes valueg, to
gererate new values of the attribute for the subgroup at new
time points as required in the schedile S. An illustrative
resampling exampleis shown in Example 2 in Apperdix A .4.

4.2 Stream Union

Union of two streams serves the purpose of merging two
PSrelaions with the same schema and prodwing a new
PSrelaion withou dugicatks. In applicaions, Union is used
to merge observations albout the same set of objecs from
different angles/paths to form a more complete view of the
same set of objecs. The reallting stream can have different
observationtime points from the inpu streams.

Definition 16: Set Union

The set union, deroted |, of two (compatible) PSrelaions
R, and R, isdefinedas

RUR, ={aladR, DadR,}

The setunionis very much like aconventional setunion of the
bas tuple sets of R; and R,. Note that the schemasof R, ard
R;, though compatible, may hawe differert P-strateges on
correpondng atributes The P-strateges in the redaltant
schema of the set union are left unspecified Set union serves
the purpose of defining the more gereral stream union.

Definition 17: Sream Union

The stream union of two PSrelaions Ry amd R, using
CL-gtrategy ¢ uncer schedlle S, demtedas Ry U cs) Ry, is



definedasfollows:
1. The bas tuple setin the reault PSrelaion is given

by

RiUecs R =«c(0 (R™)0p_(RP?)) ,where,

RP =Ke(0 g0y R D 0, (R2)) with
P-strategies same asthose in Ry
RP? = Ke (’O(smsz) (Ry) 0 P swsa (R2)) with

P-strategies same asthose in R,

S U S denotes a schedue with all time points
spedfied in S, the original schedule of R;, and S,, the
original schedule of R,

2. TheP-gtrategy @ for any measurement attribute a in
the resultant PSrelation is spedfied by the
following:

@(history,t)
return C(@*(history,t), @?(history,t))
where
@' denotes the P-strategy for attribute a as spedfied in R,
@2 denotes the P-strategy for attribute a as spedfied in R,

The stream union merges information in two PSrelations
together. This operation is more complex than simple set union
of al the tuples in the two PSrelations due to certain
information, such as data correlation knowledge, is caried in

the p-strategy. Thus, a complete stream union takes threesteps.

First all tuples from R; and R, are poded together to form a
larger base set, denoted asr. Then the p-strategy in R;, denoted
as pl, and the p-strategy in R,, dencted as p2, are applied on
the merged base set to estimate the observations at time points
in the spedfied schedue. This step is dore through the
resampling operationin the above formula. After this step, two
sets of observations at the same spedfied schedule points are
generated. Finally, a cleaiing operation is employed to
combine the multiple estimations at ead time point to
generate a singe consistent estimation on the schedule, which
forms the data set of the result strean. The new p-strategy is
aso dynamicdly seleded by the CL strategy.

The following subsedions present the algebraic operations of
P3RA, with examples shown in Appendix A.5.

4.3 Stream Intersection

The purpose of stream intersedion of two PSrelations is to
generate a stream with information that is verified by both
streams. In pradice, intersedion can be used to find
observations that have been verified from multi ple sources and
paths, i.e. the observations of the same objead at the same time
point from multiple sources/paths are consistent with ead
other. The consistency of multiple observations of a single

atribute is determined by the similarity of the multiple
observation p.d.f.’s.

Definition 18: Set I ntersection
The set intersedion, denoted n, of two PSrelations R, and R;,
isdefined as

R nR, ={al(@dR)C(bOR,)C(at=bt)C
(a.dim; =b.dim,) 0...0(a.dim,, =b.dim,) O
Equd (amea;,b.mea,) O...OEqud (amea,, ,b.mea,,))}

The set intersedion matches up the tuplesin R; and R, at the
same time points. It is similar to conventional set intersedion
except for the equivalence of measurement attribute values (as
defined by Equd()). Equd(m;, my) is a system-defined
predicae that determines whether the two p.d.f.’s.s my and m,
are equal. For discrete p.d.f.’s, an example diff erence function
is crossentropy, or cdled KL-distance [KL51]. Spedficadly,
the crossentropy of my to m, is defined as
D(my, m)= S my0 g 2

xOPDD m, (%)
where PDD is the data type of the probability data domain of
my; and m,. Thus, the equivalence predicae Equad(m, my) can
be given by

Equa (my, m;) = max(D(my, m, ), D(my, my) <€,

where gis a system-defined threshold.
For continows p.df's such as Gausdan p.df’'s, the equality
measure is replaced by a similarity function as proposed in
[FGBO02Z].

Definition 19: Sream I ntersection
The stream intersedion d two PSrelations R, and R, under
schedule S, denoted Ry N (g) R, , is defined as
1. The base tuple set in the resultant PSrelation is spedfied
by the following:
Let

O ={d:(ta0dR,) (b OR,) O(a.dim = b.dim) 0(d = a.dim)}

and

R=p5(R) n ps(R,) . Here O denates the set of objeds
appeaed in bah relations and R the set of observations on
these ohjedsagreed in bah R; and R,.

RN R ={(d,mt):(t0S)0(dDO) T
(rORO(rt=t)O(r.dim=d) d(r.mea=m)) O
O ORO(rt=t)d(r.dim=d) O(m= NULL)))}

2. The P-strategy® for any measurement attribute a in the
resultant PSrelation are spedfied by the following:
@(history,t)
if @*(history,t) = @*(history,t)
then return @*(history,t)
elsereturn NULL
where
@' denotes the P-strategy for attribute ain Ry,
@? denotes the P-strategy for attribute ain R,, and



The stream intersedion operation finds the information that is
agreed to by multiple PSrelations. A stream intersedion takes
three steps. First, al tuples from R; are resampled to obtain
estimations for the operator schedule S. Then all tuples from
R, are resampled to obtain estimations for the operator
schedule S. Now, at ead schedue point we have two
estimations, from R; and R, respedively. If these two
estimations agree (based on p.d.f. equivalence when the
attribute is probabili stic), the agreed estimation serves as the
tuple at that time point in the result PSrelation. If nat, a
NULL tuple is creaed for that time point, meaning no
estimation is available or the uncertainty is infinite. The
p-strategy for the result PSrelation is constructed as a
composition of the p-strategies in the inpu PSrelations
foll owing the logic described above.

4.4 Sream Difference

The difference of two PSrelations is used to eliminate certain
observations as described in one relation from the other. In
pradice, this operation can be used to remove from a stream
certain observations that are later deemed inappropriate. For
example, readingsin certain range from one sensor might need
to be removed becaise it is foundthat the sensor was wrongy
configured for that range. As another example, civilian users
are dlowed to use GPS with predsion less than what is
required by the military. Thus, certain tuples in the GPS data
stream will need to be removed before being fed to civilian
applications.

Definition 20: Set Difference

The tuple set difference denoted “—*, of two PSrelations R;
and Ry, isdefined as

R -R, ={a|(@0R)C(-CbOR,)C(at=bt)C
(a.dim =b.dim) OEqud (a.mea, b.mea))}

The set difference matches up the tuples in R; and R; at the

same time points. If al attribute values of atuple in R, agree

with those of some timestamp-matching tuple in R, the tuple

in Ry isremoved.

Definition 21: Stream Difference

The stream difference of two PSrelations R; and R, under

schedule S, denoted R, —() R, , isdefined as

1. The base tuple set in the result PSrelation are spedfied
by the following.

Let O={d:(Ca0R))0(d =adim)} and
R=ps(R) - ps(R,) . Here O denotes the set of objeds
appeaed in Ry and R the set of observations in Ry
diagreed by R,.

R =5 R ={(d,m1t): (t0S) T IO) T
(rOROrt=t0Or.dim=dOr.mea=m) O
(-OOROrt=t0r.dim=d Om= NULL))}

2. The P-strategy #for any attribute a in the resultant
PSrelation are spedfied by the following:

@(history,t)

if @*(history,t) = @*(history,t)
then return NULL
elsereturn @*(history,t)
where
@' denotes the P-strategy for attribute ain Ry,
@? denotes the P-strategy for attribute ain R,, and

The stream difference operation removes information that is
available in R, from R;. A stream diff erence takes three steps.
Firg, al tuples from R; are resampled to obtain estimations
for the operator schedue S. Next, al tuples from R, are
resampled to obtain estimations for the operator schedule S.
Now, at ead schedule point we have two estimations, from Ry
and R, respedively. If these two estimations agree (based on
the p.d.f. equivalence when the attribute is probabili stic), the
agreal estimation is removed by putting up a NULL tuple
(meaning Not Applicable) for that time point in the result
PSrelation. If nat, the estimation tuple from R; is preserved as
the tuple for that time point in the result PSrelation. The
p-strategy in the result PSrelation is constructed as a
composition of the P-strategies in the inpu PSrelations
foll owing the logic described above.

4.5 Stream Select
Definition 22: Stream Select
The stream seled of a PSrelations R over predicae pr under
schedule S, denoted aso,, )R, is defined as foll ows.
1. The base tuple set in the resultant PSrelation are
spedfied by the foll owing.
Let O={d:((rOR;)O(d =adim)}
denates the set of objeds appeaed in R.
Oor.gR={(d,mt): (t0S)C(d0O0) L

Here O

(O ORO((pr(r)O(m=r.mea)) d(=pr(r) O(m= NULL)))}

2. The P-strategy @ for any measurement attribute a in
the resultant PSrelationis spedfied as follows:

@(history,t)

if pr(¢* (history,t), ..., @*(history,t)) = TRUE
then return @4(history,t)
elsereturn NA

where
X;, 1<i<k, denote the attributes involved in evaluation of pr,
@* denates the P-strategy for attribute x; in R, and
@2 denate the P-strategy for attribute ain R.

Note that if some measurement attributes are included in the
predicae pr, the computation of pr has to be probabilistic,
following the basic operations described in Sedion 2.2. In
addition, the result of the evaluation of pr is also probabili stic.
For example, the evaluation of (N(1=30,0=2)<32) resultsin a
Boodlean distribution. To ded with this problem, we assume a
user-defined threshold associated with ead seledion
operation which determines the minimum TRUE probability
to satisfy the condtion. For example, a 70% threshold will



make the evaluation of (N(x=30,0=2)<32) TRUE, while a
90% threshold will result in FALSE for the evaluation of
(N(1=30,0=2)<32).

The strean seled operation picks information that satisfies a
spedfied condtion. The stream seled is caried out in two
steps. First the original PSrelation R is resampled to obtain
estimations for the operator schedule S. Then at ead schedule
point the predicate is evaluated against the estimation at that
time paint. If the predicae evaluates to TRUE, the estimation
is passd to the output PSrelation. Otherwise, a NULL tuple
for that time point is passd to the output PSrelation. The
same logic is used to construct the output P-strategies out of
the original P-strategiesin the input PSrelation.

4.6 Stream Projection

The purpose of projedion of a PSrelationis to produce a new
PSrelation with only part of the attributes in a PSschema
from the original PSrelation, and to remove dugicate tuples.
Note that the observation timestamp is not pat of a
PSschema, and thus it can not be crossd out. Also, the
elimination of cetain dimension attributes may result in
dupicaed estimations at the same time point. Thus a cleaning
operation is needed to make the final result avalid PSrelation.

Definition 23: Stream Projection

The stream projedion of a PSrelations R over a subset of the
attributes spedfied in R's schema Apg = (A1, ...AY), using
CL-strategy C and under schedule S, dencted TIC,5, Ag) (R),

is defined as foll ows:

1. Thebasetuple set of n(c,_,S,Apm_)(R) isgiven by
TcL,s,Auy) (R) =«¢ (”Apr (PS<R))) ,
where TTa i.s the conventional projed operation
withou dugication elimination.
2. The schema of ﬂ(CL’S’ApmJ)(R) is simply the

o

colledion of éttributes Ay, the P-strategy of ead

measurement attribute remains the same.

The strean projedion is very similar to the conventional
projedion operation (i.e. only the columns of the attributes to
be projeded are preserved) except a resample operation is
dore first to match the output schedule requirement and a
cleaning operation is dore to remove dugicae observations.
The p-strategy for ead projeded attribute is also preserved.

4.7 Sream Cartesian Product

Cartesian product is used to merge two PSrelations with
possbly different schemas. The schema of the resulting
PSrelation is a concaenation of the schemas of the two inpu
PSrelations. In sensor network appli cations this operation can
be used to merge different types of data streams. For example,
the temperature readings stream and presaure readings strean

of the same gas chamber can be merged together to form a
complete view of the same objea.

Definition 24: Stream Cartesian Product

The stream Cartesian prodwct of two PSrelations R; and R,
under schedue S denoted as R, Xg R, , is defined as
following:
1. Thebasetuple set of theresultant PSrelationis given
by
Ry xs Ry ={(p,1) [(py 0 ps(Ry)) O(p, U ps(Ry)) U
(t0S) O(pyt =t) (Pt =t) (P =(p1, P2))}

2. The schema of R; xgR, contains the attributes
coming from both R; and R..

The stream Cartesian product takes two steps. First, the inpu
PSrelations-R; and R,, are resampled over the schedule S
Next, tuples with the same timestamps are paired up and
attributes from R, are concaenated to the attributes from Ry
Because of the resampling step over the same schedule, eath
tuple in R, is guaranteed to pair up with one and only one
tuple in Ry with the same timestamp. A tuple in the Cartesian
prodwt of two PSrelations represents a simultaneous
observation of all attributes in the original inpu streams at a
time point.

4.8 Sream Join

The stream join operation is defined as a composition of
Cartesian product and seled, similar to the join operation in
conventional relational model. We take the theta join as the
example. Equal join and natural join areits spedal cases.

Definition 25: Stream Join

The stream join of PSrelations R; and R, with predicate pr
under schedule S, denoted as Ry g R;, is defined as
Rib<prgRe= 0 pr 5 (R X(s) Ry)

Example for stream join is omitted as it is a straightforward
composition of Cartesian product and seled

4.9 Stream Aggregation

The PSrelational model can aso be extended to suppat
stream aggregations. A stream aggregation, like an aggregation
in conventional relational model, neads a GROUP BY
condtion.

Definition 26: Stream Aggregation

The stream aggregation of a PSrelations R with a set of
groupng attributes G (spedfied as a set of attributes) and a set
of aggregation functions F (one for ead attribute to be
aggregated) under the history constraint hc (a predicae
spedfying whether a tuple shoud participate in the
aggregation) and a output schedule S, denoted asl ¢ 1. o) R,
is defined asfoll ows.
1. The PSschema of U p.c5R has two types of
attributes: attributes contained in the group condtion G
(al attributes in this caegory become dimension
attributes in the new schema) and attributes resulted from



aggregation functions F (all attributes in this category
keeg their type in the new schema, i.e. dimension
attributes are still dimensional and measurement attributes
are still measurements).
2. The base tuple set of [ g5 R has ore tuple for eath
timepointtinS.
O necsR={(g, f,1):(t0S C(Cr OR) C

(rg=g)Uf =F(R,9g)}
where R={r|r 0 p (R) Ohc(r)} denotesthe
PSrelation resampled from R under schedule Sand satisfy
history constraint hc and F(t, R', g) denotes the application of
the aggregate functionsin F to the tuplesin R with grougng
attribute value being g and timestamp < t.

Example 9 shown in Appendix 5 aso demonstrates how
diding time window is implemented as a history constraint in
PRA. Since PRA suppats arbitrary predicaes as history
constraints, arbitrary window type can be suppated. Note that
this history constraint can also be embedded into P-strategies
to screen out unwanted tuples since P-strategies can be
dynamicdly changed by users. Thus other operations withou
explicit history constraint can also operate on a window of
stream history instead of the default whole history. History
constraint is explicitly spedfied in stream aggregation only for
the purpose of conwvenience withou adding extra modeling
power.

5. Propertiesof PSRA

In this sedion we show the modeling power of PSRA through
the foll owing threetheorems.

Theorem 1: Operatorsin PSRA are non- blocking

Proof: All operations (except Cleaning) in PSRA are applied
on PSrelations and have an associated operation schedule.
Becaise every attribute in a PSrelation has a prediction
strategy, for any time instant t, a PStuple with that timestamp
can be estimated from existing base tuples and correspondng
prediction strategies, regardlessof whether any PStuple in the
base tuple has timestamp t. Cleaning operation, as a helper
function, is only applied on pre-resampled data as defined in
Stream Union and Stream Projedion. Thus regardless of the
operation schedule requirement, a result PStuple can aways
be computed for any time instant in the schedule withou
waiting for any information. New information (PS tuples)
injeding into inpu PSrelations only improve the quality of
the results (e.g. less standard variations for Gausdan p.d.f.’s)
at future observation time instants. Thus al operatorsin PSRA
are nonblocking.

Theorem 2: Existing Deterministic data steam models can be
modeled in PSRA

Proof: Arasu et al [ABWO3] has proved that the CQL data
steam modd is less expressve than Aurora, similar to the
TelegraphCQ model and more expressve than other existing

deterministic data strean models as discussed in Related Work.
Thus we only need to show that CQL and Aurora models can
be modeled in PRA. Using Lemma 2 and Lemma 3 proved in
Appendix A.6, we conclude that this theorem holds.

6. Reated Work

Ladk of diredly comparable probabili stic data stream models,
reseach works in deterministic data stream models and data
uncertainty models are generally related to this paper.

Data stream models

Studies on data stream models, in a generalized sense, can be
tracal badk to materialized view maintenance [H87, SR88,
GM95, IMS95], where upcktes to views are continuowsly
computed based on updetes to base tables on which the views
were defined. Next, this problem was studied in the context of
adive databases, where rules are cortinuowly evaluated
driven by database adivities [PD99]. Explicit data stream
models were first introduwced in [TG+92] and recently have
been studied extensively [S96, CD+00, ABW, AC+03, CC+03,
CJH03]. The detail s of these models are discussed below:

The Chronicle Data Model (CDM) introdwed in [IMS95]
separated the concept of relation from that of streamn
(Chronicle, in their original term). The CDM suppats the
common relational operators and aggregations with
incremental maintenance of materialized views. The data
model in Tapestry system [TG+92] is esentialy relationa
models suppating time-oriented queries. In Tapestry al data
including strean data are stored in database and queried
periodicdly and results are merged together to form the result
stream. NiagaraCQ [CD+00] introduced intelligent groupng
to optimize continuows queries over large amourt of XML
documents. Data model wise, it is Smilar to Tapestry.
Gigascope [CHO3] takes a stream-only approach. Seledion,
join, aggregation and merge (similar to union) operations are
suppated over streams. Tribeca [S96] is another pure stream
model  suppating window spedficaion and a subset of
relational operators and aggregations in form of demux and
mux. TelegraphCQ [CC+03] propcsed a window-based
stream-to-stream data model, where, for every instant in time,
relational operators are applied to windows of inpu data
streams, resulting in a set of tuples associated with that instant
intime. Aurora[AC+03] proposed aprocedural framework for
data stream processng. Its data model is also strean-to-stream,
with the foll owing seven operators: Filter, Map, Union, Bsort,

Aggregate, Join, Resample.

CQL [ABWO3] takes asimilar approach to CDM inthat it also
separates the concept of relation from that of stream to take
advantage of existing optimizaion techniques for traditional
relational algebra. Streans can be conwverted to relations using
windows. Relations can be converted to streams by generating
new elements along time using Isteam, Dstream or Rstream



operators. Operationsin CQL are caried out in threesteps. All
streams are first converted to reations. Then traditional
relational operators are applied on these relations. Finaly all
result relations are converted bad to result streams.

All existing data models discussed abowve tred a data stream as
a bag of ordered tuples, either explicitly or implicitly, withou
consideration of inherent correlations within a stream and
agoss dstreans. In addtion, al of these models are
deterministic in the foll owing senses:

1.  All datatypesare deterministic.

2. There is no forma model of data uncertainty

incorporation and propagation.
3. Thereisnobuilt-in probabili stic query suppart.

Data uncertainty models

Management of data uncertainty in database systems can be
divided into probabili stic models [BG+92] and fuzzy models
[AR84, KF88]. However fuzzy logic is more concerned with
compensating for the ladk of expressvity in alanguage insteal
of diredly with data uncertainty [FGB0Z]. Thus probabili stic
model is more suitable of modeling uncertainties in data from
physicd world [FGBO02].

Reseach in probabili stic data model can be traced bad to the
study of data incompleteness in databases [W82, [L84].
Probabili stic data model suppating discrete p.d.f.’s have been
extensively investigated [CP87, BG+92, DS96]. Faradjian et
a [FGBO2Z] recently proposed a Gausdan distribution abstraa
data type suppating continuows p.d.f. Faradjian generalized
the equality of two Gaussan p.df's using similarity
measurement and measure the difference of two Gaussan
p.d.f's with total variation distance [FGB0Z]. However
mutual independency are implicitly assumed in al operations
in [FGB02] as no dependency model was discussed and
employed in [FGBO0Z]. Lakshmanan et a first introduced
dependency models for computing probability of compasite
events [LL+97]. However their model only suppats Bodean
datatype andis nat first-order.

The probabilistic relational algebra for temporal databases
proposed by Dekhtyar et a. [DRS01] has been particularly
inspiring to our work. Their algebra suppats modeling and
ressoning of uncertainty abou the start time, end time and
duration of events while keeping al measurement vaues
deterministic. In sensor data applicaions, we often need to
model and reasson abou the uncetainty inherent in
measurements at predse time instants as discussed in sedion
1

7. Conclusions

Sensor data streams exhibit spedal charaderistics such as
inherent information uncertainty, inherent data sample
correlations within and aaoss streans, senstive energy
consumption and context-dependent data importance We
introduce the Probabili stic Streamn Relational Algebra (PSRA),

a data model for sensor data steans, by extending
conventional relational model to addressthese charaderistics.
Spedficdly, a sensor data stream is modeled with a
PSrelation consisting of a series of probabili stic data samples,
cgpturing the inherent data uncertainties, and an associated
prediction strategy cegpturing the inherent data sample
correlations. Dependency models are introdwed, in form of
composition strategies, to suppat complex probabilistic
operations. A predicae-based schedue spedficaion is
proposed, suppating spedficaion of both push (eqg.
event-driven) and pull (e.g. periodic query) type operations, to
explicitly spedfy when to produce the next data tuple for an
operation. With this model, memory required to store
information of a data stream (i.e. memory required to store the
base tuples for the strean) can be reduced when a high quality
data correlation model is available. Data stream quality now
can be intuitively defined by data uncertainties in desired
schedule. Application QoS requirements can be expressd as
data uncertainty requirements in its desired schedule. This
requirement can then be transformed badkward to guide the
scheduling of underlying operations and even the sensors
themselves. This schedule requirement propagation is a
dynamic process depending on the computing context. Thus
PRA provides a context-ware mechanism fadlit ating energy
management in sensor networks through operator scheduling
feedbadks. We aso prove that operators in PRA are
non-blocking, thus making PSRA espedally suitable for data
strean processng. Finadly we demonstrate the modeling
power of PRA by showing that conventional relational model
and existing deterministic data stream processng models can
be modeled in PRA.

This paper represents our initial effort in bulding a
probabilistic sensor data strean processng system. Future
work includes study of equivalences in PRA for exeaution
optimizations and construction of a prototype system.
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Appendix

A.1. Definitions of CONST and IGNORANT Prediction Strategies

CONST Prediction Strategy:
@ (history, t)
return history@.to

where

history@.t, denotes attribute value at time tg (to <t)

IGNORANT Prediction Strategy:
@ (history, t)
If there exists history@.t
then return history@.t
else return history@.t” with infinite uncertainty

where

t denctes the time instant most recent to t and avail able in history

A.2. Sample Composition Strategies
Table 1 shows compasition strategies for Gausdan p.d.f's. Table 1 is derived from common pradice in measurement
engineaing [W94]. Tables 2 shows compasition strategies for Bodean randam variables. Table 2 is derived from [LL+97]
by adding conservative or aggressve constraints to maintain first order representations of probabili stic Boolean values.

Table 1: Compasition Strategies for Gausdan p.d.f under algebraic operations

+ - * /
Ignaance Conservative | (ug, 01) + (12, 62) = (b1, 01) - (2, 02) = (11, 00 * (H2 02) = (b, 00) / (12, 02) =
(hat p2, 01+ 02) (H1-p2, 01+ 02) (He*p2, | pa*o al+ Ja*o o)) (Ha/pa, o of pal + foof paf)
Aggressve | (u1, 61) + (M2, 62) = (H1,01) - (2, 62) = (H1, 01) * (H2, 02) = (n1,01) / (2, 02) =
(Hat p2, |01-62)) (H1- M2, |01~ G2)) (He*pa, [[Ho* o 1l a*o2l) (Ha/p2, [lo of pa| - |o of palD
Positive Conservative | (uy, 61) + (12, 02) = (H1,01) - (2, 02) = (u1, 01) * (H2 02) = (n1,01) / (2, 02) =
Correlation (Hat p2, 01+ 02) (H1- M2, MX(0 1, 0 2) (He*p2, | po*o 1tpa* o 2)) (Ha/pz, o of po+ o2 )
Aggressve | (u1, 01) + (12, 02) = (n1,01) - (2, 02) = (u1, 01) * (H2 02) = (n1,01) / (2, 02) =
(et p2, Min(o 1, 02)) (Ha-pa, |01~ 02)) (ne* p2, Min(|uz* o 4, a* o 2[) (a2, min(lo o/ palifo of paf))
Negative Conservative | (uy, 61) + (12, 02) = (h1,01) - (p2, 02) = (h1, 00) * (H2 02) = (h1,01) / (2, 02) =
Correlation (hat po MaX(01, 02)) (Ha-p2, 01+ 02) (1a* 2, MaX(Jpz* 0 1, [ua*o 2))) (a/p2, maX(fo of palfo 2f pal)
Aggressve | (i, 61) + (n2, 02) = (,01) - (n2,02) = (11, 60 * (H2 02) = (b, 00) / (12, 02) =
(hat po, |01- 02)) (Ha-p2, Min(o 1, 02)) (he*p2, | po*o 1-pa*o2)) (Wa/p2, lo o/ po- o2/ W)
Independence | Conservative | (1, 61) + (M2, 62) = (M1, 01) - (12, 62) = (M1, 61) * (2, 62) = (11, 01) / (2, 62) =
Aggessve | (it b SUt(01°+ 627)) | (ki SOMt(01*+ 679)) | (ke SANt((k2¥ o )™ (11*62)%) | (wa/hz, SOMt((0 o/ p)*+
(u*oof p)?)
Table 2: Compoasition Strategies for Boolean variable under logic operations'
Conjunction (0) Disjunction ()
Ignaance Conservative(lower) max(0, pi+ p2-1) max(ps, Pz)
Aggessve min(py, pP2) min(1, p1+pz)
Positive Conservative min(py, P2) max(p, Pz)
Correlation Aggressve
Negative Conservative max (0, pi+ pz-1) min(1, p1+pz)
Correlation Aggressve
Independence Conservative Pt p2 p1t+ P2— (Pr* P2)
Aggressve

A.3. Predicate-based Schedule Specification (PSS)

! NOT is an unary operator, thus not included in this table




A predicate-based schedule spedfication, PSS for Schedule Sisamapping of {{ pty, ... ,ptn} . { Sti, ... ,Stm }} 216, Where
1. nandmarefinite integers
2. pty (1<k<n) isadeterministic predicate. (i.e. it evaluates to either TRUE or FALSE)
3. stk (1<k<n) isaninternal state needed for predicate evaluation
4. t,isthenexttimepointin S whenever PSSisinvoked

Schedules used in sensor network applicétions fall into three caegories: absolute, relative and value-based. Absolute
schedule is spedfied diredly througha series of timestamps. For example, monitor temperature readings every 5 minutes
from 00:00:00. Relative schedule is spedfied as time diff erences to other schedules. For example, whenever atemperature
reading is recaved. Value-based schedule is determined by evaluation of the predicaes over certain attribute values. For
example, report temperature when it is greaer than 50 degrees. A general schedue can be a combination of these three
types. Thus computing next time point requires continuows evaluation of the predicates for these threetypes of schedules.

A.4. lllustrative Examplesfor PS-relations and resampling

Example 1: Consider a PSschema Sy=(Sensorld, ObjMonitored, SensorLoc, Temperature) for temperature sensors, where
Sensorld, ObjMonitored, SensorLoc are dimension attributes representing sensor id, objed to be monitored, and locaion
of the sensor, while Temperature is a measurement attribute. The following is an example PSrelation T over the
PSschema S; under aschedule S=(1, 2, 3, 5).

Sensorld ObjMonitored SensorLoc Temperature Timestamp
Sl 00001 (20,50 N(50, 0) 1
Sl 00001 (20,50 N(51, 1) 2
Sl 00001 (20,50 N(52, 1) 3
Sl 00001 (20,50 N(55, 0) 5
S2 00001 (30, 60 N(51, 1) 1
S2 00001 (30, 60 N(51, 0) 2
2 00001 (30,60 N(51, 1) 3
2 00001 (30,60 N(52, 0) 5

There are two objed PStuple setsin T, identified by dimension attribute values (‘S1’, ‘00001, ‘(20, 50)"), and (‘S2’,
‘00001, (30, 60)") respedively. The four grey tuples belongto objed PStuple set (‘S1’, ‘00001, ‘(20, 50)"). The rest
four tuples belongto objea PStupleset (‘S2’, ‘O0001, ‘(30, 60)"). They record the temperature readings measured by
the two sensorsin acordancewith schedule S.

Example 2: Consider the inpu PSrelation as given in Example 1. Asaume that Sis {1,2,3,4,5}, the P-strategies for
Temperatureis:
H(ti) = Hltir), Ot ) = Oty y) + 10RO

ps(R) yields:

Sensorld | ObjMonitored SensorLoc | Temperature TS
s1 00001 (20,500 | N(50,0) 1
s 00001 (20,500 | N(51 1) 2
s1 00001 (20,500 | N(52, 1) 3
s1 00001 (20,500 | N2 1+4/e) | 4
s1 00001 (20,500 | N(55,0) 5
2 00001 (30,600 | N(51 1) 1
2 00001 (30,600 | N(51 0) 2
2 00001 (30,600 | N(51 1) 3
2 00001 (30,600 | NGBL1+4/e) | 4
2 00001 (30,60) | N(520) 5

Note that in addition to prediction, P-strategies can be used to model diding windows. For example, one can spedfy a
P-strategy, which only returns data with timestamp in the most recent one hou (return NULL for al other timestamps), to
simulate a gliding time window as commonly used in other data stream models.

A.5. lllustrative Examplesfor PSRA Operators




Example 3 Consider two PSrelations T; and T, over the same PSschema Sy=(ObjMonitored, Temperature), where
ObjMonitored is a dimension attribute and Temperature is a measurement attribute. In addition, the P-strategies of
Temperaturein T, and T, are given by

P-strategy for Ty pu(ty) = f(t,y), o(t,) = O(t,_y) +1.0 @5 h-r)

P-strategy for To: (ty) = ((ti—), O(ty) = Oty ) + 0.5

where ((t,.1) and d(t.;) are the mean and standard deviation of the Gausdan p.d.f. at time t.;.

T, (with schedule (1, 3, 5))

ObjMonitored Temperature Timestamp
00001 N(50, 0) 1

00001 N(52, 1) 3

00001 N(55, 0) 5

00002 N(51, 1) 1

00002 N(51, 1) 3

00002 N(52, 0) 5

T, (with schedule (1, 2, 5))

ObjMonitored Temperature Timestamp
00001 N(50, 0) 1

00001 N(52, 1) 2

00001 N(54, 0) 5

Let the CL-strategy C=Average using conservative ignarance and the schedule S=(1, 2, 3, 4, 5). The result PSrelation
T,0(cgTs isgivenin the following table:

ObjMonitored Temperature Timestamp
00001 N(50, 0) 1
00001 N(52, 1) 2
00001 N(52, 1) 3
00001 N(52, 1+0.75/e) 4
00001 N(54.5, 0) 5
00002 N(51, 1) 1
00002 N(51, 1+0.75/e) 2
00002 N(51, 1) 3
00002 N(51, 1+0.75/e) 4
00002 N(52, 0) 5

And the new P-strategy on Temperature becomes
H(ty) = Uty) Ot ) = O(tyy) +0.75%50 )

Example 4. Consider the same PSrelations T, and T, as described in Example 3. Assume the p.d.f. equivalencethreshold
gisset to be 0. The PSrelation output by Tin ¢ 5T, Where C=Aver age and the schedule S=(1, 2, 3, 4, 5), isthe following:

ObjMonitored Temperature Timestamp
00001 N(50, 0) 1
00001 NULL 2
00001 NULL 3
00001 NULL 4
00001 NULL 5

Example 5. Consider the same PSrelations T, and T, as described in Example 3. Asaume the p.d.f. equivalence threshold
gissetto be 0. The PSrelation output by T;—c.sT,, where C=Aver age and the schedule S=(1, 2, 3, 4, 5), isthe following:

ObjMonitored | Temperature | Timestamp |

. +u2 o,+02
2Thaus,C((m,ol),mz,az)):”l2” , 12 .




00001 NULL 1
00001 NULL 2
00001 N(52, 1) 3
00001 N(52, 1++e) 4
00001 N(55, 0) 5
00002 N(51, 1) 1
00002 N(51, 1++e) 2
00002 N(51, 1) 3
00002 N(51, 1++/e) 4
00002 N(52, 0) 5

Example 6. Consider the same PSrelations T, described in Example 3. The following shows the PSrelation output by
O (Temparature<ss, 5 11, Where S=(1, 2, 3, 4, 5) and the threshold assgning to minimum TRUE probability of the predicae
Temperature<54 is 80%.

ObjMonitored Temperature Timestamp
00001 N(50, 0) 1
00001 N(50, Je) 2
00001 N(52, 1) 3
00001 NULL 4
00001 NULL 5
00002 N(51, 1) 1
00002 N(51, 1++e) 2
00002 N(51, 1) 3
00002 N(51, 1++/e) 4
00002 N(52, 0) 5

Example 7. Consider the PSrelation T shown in Example 1. Assume that the P-strategy of Temperature is given by

M) = pty), o) = o(t4) +1.0 @%5® %) Note that in every time paint in T, there are two PStuples with same
value in ObjMonitored. Thus, the projea of ObjMonitored and Temperature from T requires cleaning. Let the CL-strategy
C=Average using conservative ignarance and the schedule S=(1, 2, 3, 4, 5). The PSrelation output by Tic, s, objmonitored,
Temperature) 1 15 the following:

ObjMonitored Temperature Timestamp
00001 N(50.5, 0.5) 1
00001 N(51, 0.5) 2
00001 N(515,1) 3
00001 N(515, 1++e) 4
00001 N(535, 0) 5

Example 8. Consider the PSrelation T shown in Example 1 and ancther PSrelation P shown below:

Sensorld ObjMonitored Presaure Timestamp
P1 00001 N(100, 0) 1
P1 00001 N(104, 1) 2
P1 00001 N(107, 1) 4
P1 00001 N(110,0) 5

Asaume that the P-strategies for Temperature in T and Presaure in P are the following:
P-strategy for T gu(ty) = f(t,_y), o(t,) = O(t,—y) +1.0@O5 M h-)
P-strategy for P: p(t, ) = u(ty_),o(t,) = o(t,) +05 @05 ~t)

The PSrelation of TxgP, where S=(1, 2, 3, 4, 5) isthe following:



T.Sensorld | T.ObjMonitored | T.SensorLoc | P.Sensorld | PObjMonitored | Temperature | Presaure Timestamp
S1 00001 (20, 50) P1 00001 N(50, 0) N(100, 0) 1
S1 00001 (20, 50) P1 00001 N(51, 1) N(104 1) 2
S1 00001 (20, 50) P1 00001 N(52 1) N(193, 3
1+—)
S1 00001 (20, 50) P1 00001 N(52, N(107, 1) 4
1+/e)
S1 00001 (20, 50) P1 00001 N(55, 0) N(110 0) 5
2 00001 (30, 60) P1 00001 N(51, 1) N(100, 0) 1
2 00001 (30,60 P1 00001 N(51, 0) N(104, 1) 2
S2 00001 (30, 60 P1 00001 N(51, 1) N(1974 3
1+_e’)
2 00001 (30, 60 P1 00001 N(51, N(107, 1) 4
1+ \/E )
2 00001 (30,60 P1 00001 N(52, 0) N(110 0) 5

Example 9. Asaume that schedule Sis {1, 2}, Group condtionis Sensorld, F for temperature reading is AVG, R is given
as foll ows after resampling, and independent compasition strategy is adopted for example

Sensorld Temperaturereading | Timestamp
Sensor01 N(50, 4) 1
Sensor01 N(40, 2) 2
Sensor02 N(60, 10) 1
Sensor02 N(50, 8) 2

a). When hc all ows the entire history to participlate aggragation (i.e. hc = TRUE), D(F,G,S) R vyields

Sensorld Temperaturereading | Timestamp
Sensor01 N(50, 4) 1
Sensor01 N(45, 2.24) 2
Sensor02 N(60, 10) 1
Sensor02 N(55, 6.4) 2

b). When hc impases awindow constraint of length 1 by chedking (current time—t < 1),

D(F’G’S)R yields

Sensorld Temperaturereading | Timestamp
Sensor01 N(50, 4) 1
Sensor01 N(40, 2) 2
Sensor02 N(60, 10) 1
Sensor02 N(50, 8) 2

A.6. Lemmasfor PSRA properties

Lemma 1: Traditional relational algebra (TRA) isa special case of PSRA
Proof: The deterministic and non-strean data types generaly used in TRA can be modeled by DD domain in PRA
framework. All attributes in TRA thus can be modeled as dimension attributes in PSRA. The CONST prediction strategy
makes sure that only one tuple is needed for ead dimension value for the whale history. Thus a PSrelation represents a
traditional relation with the only extra information of the timestamp attribute. Now consider the stream operators when all
attributes are dimensional. In this case the Cleaning and resampling operators always preserve the origina relation since

no data redundancy in original relationand all attributes have CONST P-strategy. Consequently:

stream union, stream intersedion and stream difference are reduced to correspondng set operations

stream seled beames predicae evaluation on ead dimension value, thus onead tuple in PSrelation

stream projed becomes simple dimension attributes projedion and resulting PSrelation also has only dimension
attributes, thus avalid model of traditional relation




stream Cartesian product becomes pairing up every possble combination of dimension attribute values from inpu
relations.

stream join has the same compasitional definition as in traditiona relational model. If stream seled and stream
Cartesian prodict are same asin TRA, stream join must be the same as the join operator in TRA.

stream aggegation becomes application of aggregation functions on dimensional values based on grouping
condtions, regardlessof the schedule. Result PSrelationsare also al dimensional.
Therefore TRA isaspedal case of PSRA where all attributes are modeled as dimension attributes.

Lemma 2: CQL can be modeled in PSRA

Prodf: All deterministic models process information purely uponthe timely availahility of data. Deterministic models
implicitly employ a bladk-white data uncertainty strategy: if a measurement has been recaved when it is needed, the is
zero, otherwise, data uncertainty is infinite. Thus deterministic data streams can be generally modeled by PSrelations with
IGNORANT prediction-strategy for al measurement attributes.

CQL [ABWO3] can be considered a TRA extended with three window type operations (time-based, tuple-based and
partitioned). Streams are first converted to relations using these window operations. TRA operators are then applied onthe
relation pod. Finaly results of continuows queries are converted badk to streams from relations. The window-based
operations are modeled by the IGNORANT P-strategy with constraints on the data avail able in the inpu parameter history.
For example, a simple 30 minutes sliding window in CQL can be modeled as a IGNORANT P-strategy where only the
most recat 30 minutes data (i.e. data whaose timestamps > (current time - 30 min) are passd to the IGNORANT
P-strategy as the parameter history. Thus in PSRA, window spedficaion can be modeled as inpu data constraints to
P-strategies or having this chedk up implemented inside the IGNORANT P-strategy. Since PSRA suppat arbitrary
P-Strategy, CQL window spedficaion can be modeled in PRA. Lemma 1 has shown that al TRA operators can be
modeled in PSRA when deding with pure non-stream relations. We conclude that CQL can be modeled in PRA.

Lemma 3: Aurora Data steam model [AC+03] can be modeled in PSRA

Aurora [AC+03] employs procedura stream-to-stream data model with the seven operators: Filter, Map, Union, Bsort,
Aggregate, Join, Resample. We only discussthe its data modeling power without touch on resource management related
adions. In the following discusson, P-strategies are always assumed to be IGNORANT unlessexplicitly stated.

Filter takes one inpu stream and generate (m+1) output streams, where m is the number of predicaes to be
evaluated. Filter can be modeled as m stream seled operations with output schedule same asinput schedule.

Map can be modeled by stream aggregation where attributes in the groupgng condtion include al dimension
attributes and the timestamp.

Union can be readily modeled by the stream union.

BSat can be modeled by the resampling in PSRA with a P-strategy aways returning minimal value in its
computation buffer.

Agoregate can be modeled by the stream aggregation with the window identifying attributes set as dimension
attributes.

Join in Aurora is esentidly a window-based join and can be modeled as strean join with IGNORANT
window-constrained P-strategy as discussed in the CQL part.

Resample can be reaily modeled by the resampling operator in PSRA with P-strategy correspondng to F and
schedule correspondng to the heatbeds. Thoughsyntadicaly and functionally the Aurora resample is very similar to the
PRA resampling, we draw the distinction that no uncertainties introduced by estimations are considered in Aurora
resample.

We thus conclude that data stream model in Aurora can be modeled in PRA.



